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CHAPTER 1

Classes

Below follows the different classes in CODE.

1.1 Sources

1.1.1 Sources

class Source

Abstract class defining a avalanche Source. Can for example be the avalanche source Rosenbluth and Putvinskii
derived.

Properties

state

State object for knowing the physical params use for knowing the physical params usedd

eqSettings

EquationSettings object used for knowing what settings is used

sourceVector

sourceVector - vector with the source, calculated each step with getSourceVec.

Functions

getSourceVec(this, f, iteration)

Returns the source vector at iteration from f. Should recalc and update sourceVector.

3



CODE2 Documentation, Release 1.0

1.1.2 RosenbluthSource

Extends Source. Describes and calculates the source vectors for Rosenbluth-Putvinski avalanche source.

class RosenbluthSource

Class describing a Rosenbluth Putvinskii source. Is sourceMode 1 and 2 in EquationSettings.

Properties (non-inherited)

tail_mask

Mask describing the tail of of the runaways. It is used in sourceMode 2 from EquationSettings.

nr_mask

Mask defining the runaways, i.e. when an electron is considered a runaway. This is done so all with energy bigger
twice the critical energy is considered to be a runaway (if not wMinForSource is set by user).

Functions

getSourceVec(this, f, iteration)

Returns the source vector for this iteration and also updates the sourceVector.

DetermineFastParticleRegion()

Internal function whihc determines the tail mask.

1.1.3 ChiuHarveySource

class ChiuHarveySource

extends Source. Class defining a Chiu Harvey source.

Functions

getSourceVec(this, iteration)

returns the source vector

1.2 Operators

1.2.1 Operator

(Abstract) Operator < handle & matlab.mixin.Copyable

Abstract superclass for operators. Both implicit and explicit.

4 Chapter 1. Classes
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Properties

state

eqSettings

operatorMatrix

Sparse properties

used for sparse matrix building in CODE, not requiered for implementation of the class, usage should be investigated
in implementations of the class

predictedNNZ

sparseCreatorIndex

estimated_nnz

sparseCreator_i

sparseCreator_j

sparseCreator_s

Functions

this = Operator(state, eqSettings, varargin)

Construct a new instance of this class.

matrixHasChanged = generateOperatorMatrix(this,runIndex, inputArg)

generateOperatorMatrix implementation should modify operatorMatrix to match the parameters at time index runIndex
in state object

M = getMatrix(this)

The functions below are all utilities for building sparse matrices:

resetSparseCreator(this)

Resets the sparse values.

clearSparseResidue(this)

Reduce the memory footprint by removing the vectors used for building the sparse matrix once they are no longer
needed

addToSparse(this, i, j, s)

Adds values to the sparse matrix s at index (i,j) to matrix

addSparseBlock(this, rowIndices, colIndices, block)

Adds a block to the sparse matrix. rowIndices and colIndices should be vectors. numel(rowIndices) should equal the
number of rows in ‘block’. numel(colIndices) should equal the number of columns in ‘block’.

sparseMatrix = createSparse(this)

After you are done adding elements to the sparse matrix using addToSparse() and addSparseBlock(), call this function
to finalize the matrix.

1.2. Operators 5
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1.2.2 EquationSettings

class EquationSettings

operators

Operators, in a cell array, necassary to fullfill the settings specified below.

useScreening

take screening into account

0. Ignore screening (complete screening, correct at low energy)

1. Fokker–Planck collision operator, TF model (works for all species)

2. Fokker–Planck collision operator, TF-DFT model (works for some ionization degrees of argon and Xe)

3. Fokker–Planck collision operator, full DFT model (only works for Ar+ so far)

4. Boltzmann collision operator, TF model

5. Boltzmann collision operator, TF-DFT model

6. Boltzmann collision operator, full DFT model

7. Full penetration (no screening, Z0^2-> Z^2, correct in the limit p-> infinity)

useInelastictake

inelastic collisions with bound electrons intoaccount

0. Ignore inelastic collisions

1. Bethe formula

2. RP

useEnergyDependentLnLambdaScreening

Logarithmic enhancement of the Coulomb logarithm

0. No (standard formula)

1. Yes (change in the collision operator). Interpolated Landau form.

2. Enhance by an ad-hoc factor of 1.3.

Collision operators and conservational properties

collisionOperator

specifies the type of collision operator to use

0. Fully relativistic test-particle collision operator. NOT momentum-conserving. Relativistic Fokker-Planck coef-
ficients from OJ Pike & SJ Rose, Phys Rev E 89 (2014).

1. Non-relativistic, linearized, momentum-conserving. Includes modified Rosenbluth potentials.

2. Use the non-relativistic field particle term from 1, togetherwith the relativistic test particle term from 4. Gener-
ally works better than 1, as the tail quickly becomes relativistic. The field-particle term only affects the bulk, so
the non-relativistic approximation is usually good there.

3. Use an ad-hoc relativistic generalization of the field-particle term from 1, together with the test-particle terms
from 4. Generally appears to work better than 1 & 2, although the physics basis is shaky. !!!Experimental!!!

6 Chapter 1. Classes
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4. Relativistic collision operator for non-relativisticthermal speeds. Agrees with 0 when T << 10 keV. See the
CODE-paper for details.

useNonRelativisticCollOp

usethe non-relativistic limit of thecollision operator, for instance forbenchmarking hot-tail generation againstSmith et
al. (2005), or Smith andVerwichte (2008).

Avalanche (secondary runaway) source term

sourceMode

the type of avalanche source to use

0. do not include a source

1. include a Rosenbluth-Putvinskii-like source

2. the same sorce, but using the number of “fast” particles, rather than the number of runaways, to determine
the source magnitude. Useful in runaway decay and/or when E<E_c, (when there are no runaways by defini-
tion).DISCLAIMER: This is not necessarily consistent, and is sensitive to the definition of a fast particle!

3. include a Chiu-Harvey-like source

4. include a Chiu-Harvey-like source which takes thepitch-dependence of the distribution into account (derivedby
Ola). Should be more correct than 3.

5. The same as 4, but including a sink term to conserve particle energy and momentum.

fastParticleDefinition

relevant when sourceMode = 2

0. Do not calculate the fast particle content, is notcompatible with sourceMode 2

1. Based on where the “tail” “begins” (where f/f_M > some threshold)Note that the shape of the source in momen-
tum space is only recalculated if the electric field changes, and may at times notbe consistent with the beginning
of the tail.

2. Based on relative speed (v/v_e > some threshold)

3. Based on absolute speed (v/c > some threshold)

4. Selects the most generous of cases 2,3 and the critical speed for runaways. Useful when you want to follow n_r
closely, but still have fast particle when E is close to (or below) E_c.

tailThreshold

for fastParticleDefinition = 1

relativeSpeedThreshold

for fastParticleDefinition = 2

absoluteSpeedThreshold

for fastParticleDefinition = 3

yCutSource

Arbitrary cutoff needed for source 5. Set to empty to useyCutSource = y_crit (currently only works with constant-
plasma parameters) Can also be used for source 3 and 4 (cf. sourceMode 1 vs 2)

runawayRegionMode

1.2. Operators 7
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Determines how to define the runaway region andhow to calcualate moments of f in that region.Is interpreted as 0 no
mather what in sourceMode 2.

0. Isotropic (y_c=y_c(xi=1) for all xi) – default

1. xi-dependent y_c – more correct. Most relevant for hot-tail scenarios

nPointsXiInt

resolution parameter for runawayRegionMode = 1

bremsMode

include an operator for bremsstrahlung radiation reaction

0. No bremsstrahlung losses

1. Simple, continuous slowing-down force (Bakhtiari, PRL, 2005)

2. Boltzmann op., full (both low and high k, angular-dependent cross section)

3. Boltzmann op., low and high k, no angular dependence

4. Boltzmann op., only high k, no angular dependence

1.2.3 DiagonalPlusBoundaryCondition

class DiagonalPlusBoundaryCondition

Builds the diagonal and boundary condition matrix in CODE version 1.03 CODEtimeDependent(). Basically does the
BC and diag matrix. Extends ImplicitOperators but is not really a implicit operator. Should maybe be given a new
class.

Properties

These properaties are saved todetermine if a new matrix is needed or not in next timestep.

NxiUsed

ddyUsed

RelLimitUsed

yMaxBC

Functions

DiagonalPlusBoundaryCondition(state, eqSettings)

Creates a new instance of this class

matrixHasChanged = generateOperatorMatrix(this,iteration)

Generates the diagonal and boundary condition from time derivative as if it was a ImplicitOperator.

8 Chapter 1. Classes
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1.3 Implicit Operators

1.3.1 ImplicitOperator

class ImplicitOperator

This is and abstract class handling implicit operators. These can ofcourse be used as explicit operators by adding a
minus sign to the matrix after generation of the matrix.

Properties

state

State object for creating the matricies

eqSettings

EquationSettings object, containing what settings to use for the run.

operatorMatrix

the operatorMatrix. Is calculated with the function call generateOperatorMatrix().

Sparse properties:

used for sparse matrix building in several implimations of this class. It is not requiered for implementation though.

predictedNNZ 0;

sparseCreatorIndex=1;

estimated_nnz = 0;

isparseCreator_i=0;

sparseCreator_j=0;

sparseCreator_s=0;

Functions

generateOperatorMatrix(this, runIndex, inputArg)

generateOperatorMatrix implementation should modify operatorMatrix to be the operator matrix at runIndex. Imple-
mentation should also return 1 (true) if matrix changed from previously saved matrix and 0 otherwise.

1.3.2 EfieldOperator

class EfieldOperator

Extends ImplicitOperator. Describes the electric field term in the kinetic equation.

1.3. Implicit Operators 9
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Functions

generateOperatorMatrix(this, iteration)

generates the operator matrix for the electric field at iteration from state object, with Legendre mode and number of
momentum points defined in state object. Only recomputes if it relevant properties has changed.

1.3.3 CollisionOperator

class CollisionOperator

extends ImplicitOperator. Class controlling the collsion operator Operator of the equation system. Right now
gives support to 4 collision operators. One fully linearized, one fully relativistic (with relativistic bulk) and one
with relativistic fast particles but with classical maxwellian bulk. insert info about all the collision
operators.

Functions

generateOperatorMatrix(this, iteration)

Generates the Operator matrix for the iteration, physical quantities taken from the plasma class. Matrix is valid for
the grid defined in grid class (number of Legendre Modes, number of radial grid points and exact spacing of the grid
points).

CalculateEnergyDependentlnLambda(this, p, y, lnLambda0)

returns quantities relevant for Energy dependent lambda. This is an internal function and therefore returns are normal-
ized to fit in with rest of normalization of the code. Calculates the enhancement of the Coulomb logarithm replacing
the termal speed with the relativistic momentum at high energy. Basically, nuS -> nuS*(lnLambdaHat + Ghat). The
formula is a simple interpolation between the energy dependent expression and the thermal speed expression at low
energy. References: Wesson p. 792 and (lnL0 = lnL^ee) and Solodev-Betti (2008) for energy dependence

OUTPUT:

• lnLambdaeehat -

• dlnLambdaeehatdp - derivative of lnLambda with respect to momentum

• lnLambdaeihat -

• boltzCorrectionlnLambdaeeHat -

• boltzCorrectiondlnLambdaeeHatdp -

All have the same size as momentum grid.

CalculateInelasticEnhancement(this, species, p, y, lnLambda0, useInelastic, iteration)

calculates the enhancement of the electron-electron slowing down frequency (nu_S^{ee}) due to inelastic collisions
with bound electrons around the ion. Basically, nuS-> nuS*(lnLambdaHat + Ghat).

INPUTS:

• species: struct with fields:

– nj(jspecies, times) - matrix containing number density of each species as a function of time (m^{-3})

– ZAtomicNumber - atomic number of each species. row vector, not a function of time

– Z0NetCharge - net charge for each species. row vector, not a function of time

– times - time steps. If constant, just set i to 1.

10 Chapter 1. Classes
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• p = normalized momentum gamma*m*v/(m*c) = delta*y

• LnLambda the coulomb logarithm

• useInelastic - which model to use 0: Ignore inelastic collisions 1: Bethe formula with values of mean excita-
tion energy from Sauer et al. 2: RP Rule of thumb (cutoff at y=10 to conserve particles)

OUTPUT:

• Ghat -

• dGhatdp - derivative of Ghat

Both have the same size as y.

CalculateSpeciesScreeningFactor(this, useScreening, Z, Ne, Z0, p, Lmax)

CalculateSpeciesScreeningFactor calculates the function g(p): the nu = (1+g/lnLambda), for each legendre mode. p
must be a row vector. output: g, with size (Lmax, Ny).

INPUTS:

• species - with the fields

– nj(jspecies, times) - matrix containing number density of each

– species as a function of time (m^{-3})

– ZAtomicNumber atomic number of each species. row vector, not a function of time

– Z0NetCharge net charge for each species. row vector, not a function of time

– times time steps. If constant, just set i to 1.

• p = normalized momentum gamma*m*v/(m*c) = delta*y

• LnLambda the coulomb logarithm. It is now a (Nxi-1, Ny ) matrix! (p-dependent)

• useScreening: which model to use

0. Ignore screening (complete screening)

1. Fokker–Planck collision operator, TF model (works for all species)

2. Fokker–Planck collision operator, TF-DFT model (works for some ions)

3. Fokker–Planck collision operator, full DFT model (works for some ions)

4. Boltzmann collision operator, TF model

5. Boltzmann collision operator, TF-DFT model

6. Boltzmann collision operator, full DFT model

7. no screening = full penetration

OUTPUT:

• g -

CalculateScreeningFactor(this, species, p, Lmax, LnLambda, useScreening, iteration)

CALCULATESCREENINGFACTOR calculates the enhancement of the electron-ion deflection frequency from
screening effects

INPUTS:

• species - struct with the fields

– nj(jspecies, times) - matrix containing number density of each

1.3. Implicit Operators 11
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– species as a function of time (m^{-3})

– ZAtomicNumber - atomic number of each species. row vector, not a function of time

– Z0NetCharge - net charge for each species. row vector, not a function of time

– times - time steps. If constant, just set i to 1.

• p = normalized momentum gamma*m*v/(m*c) = delta*y

• LnLambda the coulomb logarithm. It is now a (Nxi-1, Ny ) matrix! (p-dependent)

• useScreening: which model to use

0. Ignore screening (complete screening)

1. Fokker–Planck collision operator, TF model (works for all species)

2. Fokker–Planck collision operator, TF-DFT model (works for some ions)

3. Fokker–Planck collision operator, full DFT model (works for some ions)

4. Boltzmann collision operator, TF model

5. Boltzmann collision operator, TF-DFT model

6. Boltzmann collision operator, full DFT model

7. no screening = full penetration

OUTPUT:

• screeningFactor - is a matrix of size (Nxi, Ny), that describes the enhancement of the deflection frequcency for
the each Legendre mode and all y values on the grid.

CalcgBoltzmann(~, F, Lmax, Z0, Ne)

calculates the Legendre-mode-dependent correction to the Fokker-Planck deflection frequency neglecting screening.

INPUT:

• F(p) - a function handle (if numeric, pchip(F,p) works

• k - p/mc (vector)

• Z0 - net charge

• Ne: number of bound electrons

• Lmax - maximum legendre mode

The integrals are split at theta_cutoff because the legendres behave badly for too small arguments

OUTPUT:

• boltzmanng -

• p -

1.3.4 SynchrotronLoss

class SynchrotronLoss

Class used to calculate the syncrotron radiation from disitribution. Extends the implicit operator.

12 Chapter 1. Classes
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Properties

Properties used for the given operator

nueeBarUsed

What collision frequency is used for creating matrix.

BHatUsed

What normalized magnetic field is used for creating matrix.

NxiUsed

What number of legandre mode is used for creating matrix.

yUsed

What momentum grid is used for creating matrix.

deltaRefUsed

Which normalization factor is used for creating matrix.

gammaUsed

What gamma is used for creating matrix.

yMaxBCUsed

What boundary condition is used for creating matrix. (Relevant for where the matrix should start)

useFullSynchOpUsedA

If full synchrotron operator is used for creating matrix.

Functions

this = SynchrotronLoss(state,eqSettings)

Creates a new instance of this class.

matrixHasChanged = generateOperatorMatrix(this,iteration)

1.3.5 MagneticDiffusionOperator

MagneticDiffusionOperator < ImplicitOperator

Calculates local transport sink. Extends ImplicitOperator.

Properties

deltaBoverB

Size of radial magnetic field fluctuations

safetyFactor

Safety factor (q) needed for diffusion coefficient estimate

majorRadius

Major radius (in meters) for Rechester-Rosenbluth diffusion

1.3. Implicit Operators 13
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radialScaleLength

Length scale for radial variation of runaway density (in meters)

ionMassNumber

Ion mass number (in proton masses)

1.3.6 Functions

function this = MagneticDiffusionOperator(state, eqSettings, varargin)

Creates a new instance of this class.

function matrixHasChanged = generateOperatorMatrix(this,iteration)

1.4 Explicit Operators

1.4.1 ExplicitOperator

(Abstract) ExplicitOperator < handle & Operator

EPLICITOPERATOR an abstract superclass for explicit operators used in CODE. Defining abstract functions for
updating its operation vector and non abstract utility functions for creating sparse matricies.

Properties

VERSION = 1.0

Functions

function this = ExplicitOperator(state, eqSettings, varargin)

Construct a new instance of this class

1.4.2 ImprovedChiuHarveySource

class ImprovedChiuHarveySource

Calculates pitch angle dependent Chiu Harvey like source and can be switched to have a particle conserving sink term
to consverve number of particles and momentum (arissen from the source term). Extends ExplicitOperator. Is
sourceMode 4,5 in EquationSettings.

Functions

generateOperatorMatrix(this, iteration)

Calculates the explicit source term at the iteration as the time index used. Uses paramters from the State object.
Returns true if matrix has changed and 0 otherwise.

GenerateKnockOnMatrix(this, iteration)

Generates the KnockOn terms for the ChiuHarveySource with pitch angle dependencies.

14 Chapter 1. Classes
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BuildInterpolationMatrix(~, x, xp)

Help function used only in the class.

1.4.3 Bremsstrahlung

Bremsstrahlung < ExplicitOperator

BOLTZMANN generates the bremstrahlung matrix basically does the things GenerateMatrices-
ForBoltzmannOperators did minus the knock on matrix plus doing the line: boltzmannMatrix =
nBar*(1+this.plasma.Z(iteration))*bremsMatrix

Properties

NxiUsed

What number of legandre modes used.

pUsed

What momentum vector used

NyInterpUsed

What number interpolation points of y used.

useScreeningUsed

What screening switch used in EquationSettings.

bremsModeUsed

What bremsmode is calculated

speciesUsed

Used species. Todo: smart implementation to check that only the current timestep is checked if same

nBarUsed

What density used

ZUsed

Charge used

deltaUsed

Velocity over speed of light used.

lnLambdaRefUsed

Reference coloumb logarithm used.

Functions

this = Bremsstrahlung(state,eqSettings)

Construct a new instance of this class

matrixHasChanged = generateOperatorMatrix(this,iteration)

Call this function to generate the matrix.

1.4. Explicit Operators 15
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brMat = GenerateBremsMatrix(this,iteration)

[M,M_source,M_sink] = GenerateBremsstrahlungMatrix(this,mode,smallK)

Helpfunctions for building the matricies

d1sigma= d1sigma_BetheHeitler(~,p,k)

d1sigma_screened = d1sigma_BetheHeitler_screened(this,p0,k,species)

C = GeneratePitchOperator(~,p,Nxi,kMin,kMax)

[ ZMinusFSquared ] = calculateAveragedFormFactorBrems(this, species, iteration)

W = diffCrossSec(this,p,p1,theta)

outPl = LastLegendrePolynomial(this,l,x)

K = BuildInterpolationMatrix(this,x,xp)

1.5 Quantities

1.5.1 State

class State

Class gathering a collection of PhysicalParams, MomentumGrid, TimeGrid and Reference objects which
point to each other according to their documentation. Can be seen as the total state and resolution at which the equation
is solved for. Use this class to initiate the PhysicalParams, MomentumGrid, TimeGrid and Reference.

properties

VERSION

Version of class

Dependencies

physicalParams

PhysicalParams object shared with timeGrid and reference

reference

Reference object shared with all other objects in this class

momentumGrid

MomentumGrid object, containing a grid of momentum points

timeGrid

TimeGrid object containing timestep vector amongst other

16 Chapter 1. Classes
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Parameters for autoInitialGrid

NxiScalingFactor

uniformly rescales the predicted Nxi value from autoInitialGrid by a factor of NxiScalingFactor (default 1)

dyBulkScalingFactor

uniformly rescales the desired grid spacing dy at y = 0 used by autoInitialGrid (default 1, lower value yields higher
resolution)

dyTailScalingFactor

uniformly rescales the desired grid spacing dy at y = yMax used by autoInitialGrid (default 1, lower value yields higher
resolution)

Nxi_min

Nxi_max

pMax_ceiling

pMaxIncreaseFactor

minPMaxMarginFactor

pSwitch

percentBulk

r

Functions

Constructor

this = State(TRef,nRef)

Construct a new state with MomentumGrid, TimeGrid, PhysicalParams and Reference classes.

setInitialRunaway(this, Distribution)

Sets an initial runaway current to be used for autinitial grid. Distribution is Distribution object from which the
current is calculated from. The autInitGrid then takes into account for already created runaways when estimating
yMax and other parameters.

autoInitGrid(this, useScreening, useInelastic)

Automatically sets yMax, Nxi, Ny and gridWidth for gridMode 6 given the physical scenario. Unless Initial runaway
is set, theory using a gaussian distribution as start distribution is used to estimate how far the tail will reach. Requiers
that all other physical and time parameters are set to their values to give meaningfull results.

1.5.2 Reference

class Reference

1.5. Quantities 17
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Properties

Reference values

Design note: intention is that all objects containing an instance of this class also is contained in this object, think of
it as pairs. Question is if more than one instance of each class should be able to share a Reference object. Right
now it is possible to ‘hack’ the construction by creating a Reference object, and for example a TimeGrid. Then
setting the Reference in the TimeGrid. Afterwards it is possible to create a new TimeGrid and set the already
created Reference in the new TimeGrid. The firstly created TimeGrid now has a Reference object in it with
a TimeGrid object in it which is not pointing to itself. The ‘pair’ structure is then broken. Twofixes are availible:
one seperating the Reference to a copy of itself (new pointer) and using the copy for the old TimeGrid or save
both TimeGrid objects in the same Reference object.

TRef

Reference temperature

nRef

Reference density

nueeRef

Reference collision frequency

deltaRef

Reference velocity over speed of light

lnLambdaRef

Reference coulumb logarithm

Paired Objects

physicalParams

PhysicalParams object which also contains a pointer to this class.

momentumGrid

MomentumGrid object which also contains a pointer to this class.

timeGrid

TimeGrid object which also contains a pointer to this class.

Functions

Reference(TRef, nRef)

Constructor

setPhysicalParams(this, phP)

Set the PhysicalParams to passed variable

setMomentumGrid(this, mg)

Set the MomentumGrid to passed variable

setTimeGrid(this, tg)
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Set the TimeGrid to passed variable

updateReferenceVals(this, TRef, nRef)

Update TRef, nRef and all relevant attributes in TimeGrid, MomentumGrid and PhysicalParams objects in
this class.

1.5.3 PhysicalParams:

Class containing the physical parameters for the run. The idea is that the parameters you get out will always be
interpolated to a TimeGrid. This is why you only are allowed to change parameters through function calls as this
allows for consistent updates with TimeGrid. The reason for this is that if something changes, it is best if only
you need to look at one place. So let us say that this would be done in the relevant implementation of Solver
class instead, then if something needs special treatment in this class, you would need to update all implementations
of Solver. However, as it is implemented now it is hard to change a variables name (as this is fetched by this class
property) but you always now that it is consistent with the TimeGrid. Therefore, there are two sets for each supplied
physical parameter, the raw supplied parameter from which the interpolation is done and the interpolated parameter.
Example rawT which is the raw usersuppplied temperature and T which is its interpolated value.

class PhysicalParams

Properties

Physical quantities:

T

Plasma temperature (eV), given in timesteps

n

Plasma density (m^{-3}), given in timesteps

Z

Plasma effective charge, given in timesteps

E

Electric field (V/m), given in timesteps

B

(optional) Magnetic field (T), only used for calculating synchrotron radiation reaction. If a magnetic field strength is
provided, a term describing momentum loss due to synchrotron emission is included in the kinetic equation. If B is
empty it is not included.

species

a struct used with the species properties so that species has the fields nj, Z0NetCharge, ZAtomicNumber, times:

• nj(jspecies, times) - matrix containing number density of each species as a function of time (m -3)

• ZAtomicNumber - atomic number of each species. row vector, not a function of time

• Z0NetCharge - net charge for each species. row vector, not a function of time

• times time steps, same as the timessteps vector in timeGrid.

• NB species cannot be set from SetPhysicalParameters. NB overrides specified Z and n since nj and Z0NetCharge
specifies the effective charge. (Z is the fully screened value) NB only used if useScreening ~= 0
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rawspecies

Usersupplied species struct (non time interpolated)

a struct used with the species properties so that species has the fields nj, Z0NetCharge, ZAtomicNumber, times:

• nj(jspecies, times) - matrix containing number density of each species as a function of time (m -3)

• ZAtomicNumber - atomic number of each species. row vector, not a function of time

• Z0NetCharge - net charge for each species. row vector, not a function of time

• times time steps, where the ionization and densities are set

• NB species cannot be set from SetPhysicalParameters. NB overrides specified Z and n since nj and Z0NetCharge
specifies the effective charge. (Z is the fully screened value) NB only used if useScreening ~= 0

rawtT

times where rawT is defined, user supplied but to normalized time units (normalized)

rawtn

times where rawn is defined, user supplied but to normalized time units (normalized)

rawtZ

times where rawZ is defined, user supplied but to normalized time units (normalized)

rawtE

times where rawE is defined, user supplied but to normalized time units (normalized)

neTotalOverneFree

vector containing fraction density of total electrons compared to free electrons at all timesteps. Used when specicies
is used (for impurities and boltzmann operator, and bound electrons are present). If no species are used or no source
is used, this is set to 1.

nuees

Collisional frequency of electron electron collisions

deltas

thermal speed over speed of light

EOverEc

Electric field over the Critical Electrical field

EOverED

Electric field over the Dreicer Electrical field

lnLambdas

ln Λ = 14.9− 0.5 ln(
𝑛

1020 m−3
) + ln(

𝑇

103 eV
)

Coloumb logarithm
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Miscellaneous:

interpolationMethod

Interpolation method to interpolate between given values and values at timestepping times. Used in interp1 (default
previous) NOTE: SINCE NEAREST IS DEFAULT, T WILL DROP AT HALF THE TIME YOU SPECIFY WHERE
T SHOULD DROP

Time Grid:

timeGrid

TimeGrid object. It is at these timesteps the parameters are set.

Reference values:

reference

Reference object.

VERSION

Version of this object

Functions:

this = PhysicalParams(reference,timeGrid,varargin)

Set Physical properties:

setParams(this, varargin)

Set params in standard matlab syntax, e.i. ‘name’ followed by value. Does not support update of reference or
TimeGrid.

setPhysicalParameters(o, T, n, Z, E, varargin)

Usage:

• setPhysicalParameters(T,n,Z,E)

• setPhysicalParameters(T,n,Z,E,B)

• setPhysicalParameters(T,n,Z,E,B,tT,tn,tZ,tE)

t* should be in normalized units. If t* is in seconds, simply multiply by reference.nueeRef.

setspecies(this, species)

Sets the species struct

setT(this, T, tT)

Sets the temperature. tT is the time at which the temperature is defined. tT is optional if T is scalar. tT should be in
normalized units (simply if tn is in seconds, mulitply by reference.nueeRef)

setn(this, n, tn)
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Sets the density (m^-3). tn is the time at which the density is defined. tn is optional if n is scalar. tn should be in
normalized units (simply if tn is in seconds, mulitply by reference.nueeRef)

setZ(this, Z, tZ)

Sets the charge of plasma. tZ is the time at which the charge is defined. tZ is optional if Z is scalar. tZ should be in
normalized units (simply if tn is in seconds, mulitply by reference.nueeRef)

setE(this, E, tE)

Sets the Electric field (V/m) tE is the time at which the electric field is defined. tE is optional if E is scalar. tE should
be in normalized units (simply if tn is in seconds, mulitply by reference.nueeRef)

setB(this, B)

Sets the magnetic field (Teslas).

Calculate Dependent Properties

calcDepParams(this)

Misc.

interpolatePhysicalParams(this)

updateRawTimes(this, nueeRefNew)

PHYSICALPARAMS DO NOT USE THIS FUNCTION, IT IS ONLY FOR REFERENCE CLASS. NO SOLUTION
FOUND WHERE ONLY REFERENCE CLASS CAN GET THE RAW TIMES FOUND WHERE YOU ALSO CAN
USE THE FUNCTION. DONT USE THIS FUNCTION UNLESS IN REFERENCE CLASS

1.5.4 MomentumGrid

class MomentumGrid

Class for the grid in momentum space.

Properties

Reference values

reference

Reference object

Resolution parameters:

Nxi

number of Legendre modes used to represent the pitch-angle coordinate (determines resolution in xi=cos(theta))

Ny

number of points in the grid used to represent momentum

yMax
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maximum of the momentum grid, in units of y=gamma*v/v_{th}. Together, Ny and yMax determine the resolution in
momentum

y

momentum grid p/p_thermal, where p_thermal is treated classically

y2

y.^2

y4

y.^4

x

v/v_thermal x2. x.^2

gamma

Relativistic gamma function

Differential Calculation Params:

ddy

Differential operator, differenting with respect to y, requiers vector of length same as y

d2dy2

Same as ddy but second derivetive

yWeights

Integration operator with respect to y, same limitation as ddy (row vector)

ddx

Differential operator with respect to x d2dx2 - second order differential operator with respect to x

Numerical grid parameters:

yGridMode

Specifies how the points on the momentum grid are chosen

0. uniform grid on [0, dy*(Ny-1)]

1. nonuniform grid, remapped using y = scaleFactor*tan(pi*a*s/2)

2. nonuniform grid, remapped using y = -scaleFactor*ln(a-s)

3. nonuniform grid, remapped using y = scaleFactor*s/(a-s)

4. nonuniform grid, remapped using y = s^2 + gridParameter*s, where gridParameter>0 (default)

5. nonuniform grid, smooth tanh step between dense bulk and

sparse tail. gridParameter controls the spacing in the bulk (and is in units of y). gridStepWidth controls the width
of the smooth step between bulk and tail, and gridStepPosition its position (in units of y_c). gridParameter=1/15,
gridStepWidth=1/50 and gridStepPosition=2 is a good starting point, not implemented yet Above, s is a uniform grid
and a is a constant close to 1. When running a CODE+GO calculation, yGridMode must be either 0 or 4. The reason
is that only these two remappings are able to handle varying grids in the required way.
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gridParameter

for use with yGridMode 4 and 5

gridStepWidth

for use with yGridMode 5

gridStepPosition

for use with yGridMode 5

yMaxBoundaryCondition

Boundary condition at yMax (does this more belong in the equation settings?)

1. Dirichlet: F=0 (default)

2. Robin: dF/dy + (2/y)*F=0, which forces F to behave like 1/y^2

3. Do not apply a boundary condition at yMax

4. Dirichlet: F=0, with a bit of extra d2dy2 added at the last few grid points to eliminate ringing

artificialDissipationStrength

only used with yMaxBoundaryCondition=4 to control the amount of ringing

artificialDissipationWidth

in momentum (how close to yMax). Only used with yMaxBoundaryCondition=4 to control the amount of ringing

VERSION

Functions

Constructor

this = MomentumGrid(reference,varargin)

creates new momentum grid

Set functions

setResolution(this, varargin)

Sets resolution parameters, standard matlab syntax (‘name’,value). Also reinitializes the momentum grid

setNxi(this, Nxi)

Sets Nxi to passed value and also reinitializes the momentum grid

setNy(this, Ny)

Sets Ny to passed value and also reinitializes the momentum grid

setyMax(this, yMax)

Sets yMax to passed value and also reinitializes the momentum grid

setyGridMode(this, yGridMode)

Sets yGridMode to passed value and also reinitializes the momentum grid

setgridParameter(this, gridParameter)
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Sets gridParameter to passed value and also reinitializes the momentum grid

setgridStepWidth(this, gridStepWidth)

Sets gridStepWidth to passed value and also reinitializes the momentum grid

setgridStepPosition(this, gridStepPosition)

Sets gridStepPosition to passed value and also reinitializes the momentum grid

setyMaxBoundaryCondition(this, yMaxBoundaryCondition)

Sets yMaxBoundaryCondition to passed value and also reinitializes the momentum grid

setartificialDissipationStrength(this, artificialDissipationStrength)

Sets artificialDissipationStrength to passed value and also reinitializes the momentum grid

setartificialDissipationWidth(this, artificialDissipationWidth)

Sets artificialDissipationWidth to passed value and also reinitializes the momentum grid

Misc.

initializeMomentumGrid(this)

Creates momentum vectors, derivatives and more

1.5.5 TimeGrid

Class describing and containing the descritization in time.

class TimeGrid

Properties

Time advance

dt

timestep size (normalized). Distance between different time steps in uniform grid. In case of nonuniform, determines
the order of magnitude of timedifference

tMax

maximum time (minimum is so far always 0) (normalized). Maximum time to simulate to. This will always be exact
(to machine precision)

timeStepMode

specifies how the time step vector is generated

0. Constant time step (dt), in units of timeUnit

2. Logarithmic – use progressively longer time steps. Usefull for convergence towards a steady state. dt is used for
the first time step.

3. Stepwise logarithmic – like 2, except that several time steps are taken with each step length. This is to avoid
rebuilding the matrix in every time step.

logGridScaling
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step size scaling for the logarithmic grid

logGridSubSteps

how many steps to take for each time step length with timeStepMode 3

logGridMaxStep

maximum time step allowed in timeStepModes 2 and 3

timesteps

actual times the distribution is calculated in (normalized)

dts

vector of all small timechanges in (normalized)

dtsHasChanged

vector contantaining if the a element in dts vector has changed or not

nTimeSteps

number of times where the distribution is defined (actually one greater than the number of timesteps that should be
taken)

Misc

PhysicalParams

PhysicalParams object.

Design note: intention is that physicalParameters containing an instance of this class also is contained in this ob-
ject, think of it as pairs. Right now it is possible to ‘hack’ the construction by creating a TimeGrid object, and a
PhysicalParams. Then setting the TimeGrid in the PhysicalParams. Afterwards it is possible to create a new Physi-
calParams and set the already created TimeGrid in the new PhysicalParams. The firstly created PhysicalParams now
has a TimeGrid object in it with a PhysicalParams object in it which is not pointing to itself. The ‘pair’ structure is
then broken. Two fixes are availible: one seperating the TimeGrid to a copy of itself (new pointer) and using the copy
for the old TimeGrid or save both TimeGrid objects in the same reference object. properties (SetAccess = protected)
physicalParams

reference

Reference object shared amongst all state objects, containing reference values.

Functions

Constructor

TimeGrid(reference, varargin)

Set functions

setPhysicalParams(this, phP)

Sets phP to passed value and also reinitializes the time grid

setResolution(this, varargin)
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Sets varargin to passed value and also reinitializes the time grid

setdt(this, dt)

Sets dt to passed value and also reinitializes the time grid

settMax(this, tMax)

Sets tMax to passed value and also reinitializes the time grid

settimeStepMode(this, timeStepMode)

Sets timeStepMode to passed value and also reinitializes the time grid

setlogGridScaling(this, logGridScaling)

Sets logGridScaling to passed value and also reinitializes the time grid

setlogGridSubSteps(this, logGridSubSteps)

Sets logGridSubSteps to passed value and also reinitializes the time grid

setlogGridMaxStep(this, logGridMaxStep)

Sets logGridMaxStep to passed value and also reinitializes the time grid

initializeTimeGrid(this)

getdt(this, timeUnit)

Returns dt in specified time unit

Input:

timeUnit

s - seconds

ms - milliseconds

normalized - in nueeRef from

gettMax(this, timeUnit)

Returns tMax in specified time unit

Input:

timeUnit

s - seconds

ms - milliseconds

normalized - in nueeRef from

gettimeStepMode(this)

Returns timeStepMode

Returns timeStepMode

getlogGridScaling(this)

Returns logGridScaling

Returns logGridScaling

getlogGridSubSteps(this)
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Returns logGridSubSteps

Returns logGridSubSteps

getlogGridMaxStep(this)

Returns logGridMaxStep

Returns logGridMaxStep

gettimesteps(this, timeUnit)

Returns timesteps in specified time unit

Input:

timeUnit

s - seconds

ms - milliseconds

normalized - in nueeRef from

getdts(this, pts, timeUnit)

Returns dts in specified timeUnit

Input:

timeUnit

s - seconds

ms - milliseconds

normalized - in nueeRef from

getdtsHasChanged(this)

Returns dtsHasChanged

getnTimeSteps(this)

Returns nTimeSteps

1.6 Simulation

1.6.1 Solver

class Solver

Abstract solver class structuring a solver class to be used in CODE

Properties

state

State object containing physical information about the plasma such as temperature, Efield, Bfield and about what
momentum grid is used. This is a handle class shared by all operator objects

implicitOp

cell containing all implicit operators used in the run all objects in cell should extend ImplicitOperator class
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explicitOp

cell containing all explicit operators used in the run all objects in cell should extend ExplicitOperator class

sources

cell containing all sources for the run, care these are not decided how they should be structured inside the code yet

eqSettings

EquationSettings containing what settings for the equation to use

Functions

this = Solver(state, eqSettings)

Create a new isntance of this class.

updateOperators(this)

Updates the operators in this class to match those of the eqSettings (EquationSettings object).

takeTimeSteps(this)

Abstract function, should step in time somehow.

1.6.2 SmartLUSolver

class SmartLUSolver

Extends Solver class

Properties

timeIndex

Time index where simulation will start and where fattimeIndex is defined.

fattimeIndex

Distribution function that will be used to simulate next timestep and is thus defined at timeIndex.

nSaves

How many saves to do when invoking takeTimeSteps()

saveIndices

Which indecies will be saved. Initialized after nSaves have been set and is set when invoking takeTimeSteps()
with initsaveIndices().

factor_L

L factor in LU factorization for last taken step in time.

factor_U

U factor in LU factorization for last taken step in time.

factor_P

P factor in LU factorization for last taken step in time.

factor_Q
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Q factor in LU factorization for last taken step in time.

Functions

this = SmartLUSolver(state,eqSettings)

Construct a new instance of this class

output = takeTimeSteps(this,output)

Takes the remaining timesteps, starts from timeIndex and ends at end of TimeGrid object in State object in
this class.

If output is supplied, this will be modified by adding new output to it, usefull when extending the distributions.
Remember that this is pointers, so you if you supply a output class you only need to write takeTimeSteps(output); (e.i.
no assignment as it is a handle class).

Setters

setf(this, distribution, momentumGrid)

Sets the fattimeIndex to the distribution (is a Distribution object). If momentumGrid (MomentumGrid object)
is supplied then it interpolates the distribution function from distribution to the supplied momentumGrid object.

setTime(this, time, timeUnit)

Sets the timeIndex to last index where time is greater than the timesteps in TimeGrid object in state.

setnSaves(this, nSaves)

Set how many steps will be returned. Must be greater than 2.

initializing functions

initsaveIndices(this)

Sets what indices to save. Is called by takeTimeSteps. Always saves first and last index

clearf(this)

Reset the distribution function fattimeIndex to be empty.

setftoZero(this)

Set the distribution function fattimeIndex to all zeroes.

resettimeIndex(this)

Sets the timeIndex to be one, e.i. restart the simulation from first timestep.

setftoMaxmellian(this)

Sets the distribution function fattimeIndex to be Maxmellian.

rhs0 = enforceParticleAndHeat(this)

this adds a particle and heat source dependent on what settings are used in eqSetings. These are added to the 0th
Legandre Mode.
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1.7 Simulation output

1.7.1 Output

class Output

Properties

Settings

saveDist

switch if distribution is saved, default true

Saved Values

distributions

Cell with Distributions at times.

yc

Cell with yc at times.

nr

Cell with nr at times.

averageEnergyMeV

Cell with averageEnergyMeV at times.

averageFastEnergyMeV

Cell with averageFastEnergyMeV at times.

averageREEnergyMeV

Cell with averageREEnergyMeV at times.

currentDensity

Cell with currentDensity at times.

currentDensityRE

Cell with currentDensityRE at times.

fracRE

Cell with fracRE at times.

fracRECurrent

Cell with fracRECurrent at times.

fracREEnergy

Cell with fracREEnergy at times.

growthRate

Cell with growthRate at times.
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growthRatePerSecond

Cell with growthRatePerSecond at times.

times

Cell with times where other values are saved.

totalEnergyMeV

Cell with totalEnergyMeV at times.

totalEnergyJ

Cell with totalEnergyJ at times.

dJdtSI

Cell with dJdtSI at times.

dJ_rundtSI

Cell with dJ_rundtSI at times.

T

Cell with T at times.

n

Cell with n at times.

Z

Cell with Z at times.

E

Cell with E at times.

B

Cell with B at times.

species

Cell with species at times.

neTotalOverneFree

Cell with neTotalOverneFree at times.

nuees

Cell with nuees at times.

deltas

Cell with deltas at times.

EOverEc

Cell with EOverEc at times.

EOverED

Cell with EOverED at times.

EHats

Cell with EHats at times.

32 Chapter 1. Classes



CODE2 Documentation, Release 1.0

BHatRef

Cell with BHatRef at times.

nueeBars

Cell with nueeBars at times.

nBars

Cell with nBars at times.

veBars

Cell with veBars at times.

veBars

Cell with veBars at times.

veBars

Cell with veBars at times.

lnLambdas

Cell with lnLambdas at times.

Functions

this = Output()

save(this, timeIndex, state, f, fbefore)

Add another entry in all saved properties.

addDistribution(this, f, state, saveIndex)

Adds distrubtion function to saved cells, where values of distribution corresponds to saveIndex of
state.physicalParams.[PARAM](saveIndex)

[f, times] = getDistributions(this)

Returns distributions and their corresponding times into matlab vector format. Each coloumn is a distribution function
at a specific time.

[p, times] = getMomentumVectors(this)

Returns the momentum vectors used for the distributions functions returned in getDistributions() and their
respective times

1.7.2 Distributions

Properties

Distribution function

f
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Disitrubition function f

𝑓 =

⎡⎢⎢⎢⎣
[︀
𝑓1(𝑦)

]︀[︀
𝑓2(𝑦)

]︀
...[︀

𝑓𝑁𝜉
(𝑦)

]︀
⎤⎥⎥⎥⎦

where f_i(y) is the projection on the i_th Legandre mode at momentum y where y is defined in momentumGrid.

momentumGrid

MomentumGrid where the distribution is defined

Design note, momentum grid is not checked for changes when saved to this class. Therefore if things change in
memory to which this points to, it will be unnoticed and wrong.

time

Time where distribution is defined

Reference Values

reference values as Reference object in momentumGrid. Just saved another time. This will prob dissapear in
future version. Access with [Disitribution].momentumGrid.[TRef,nRef,. . . ] instead

TRef

nRef

deltaRef

lnLambdaRef

nueeRef

Functions

Constructor

Distribution(f, momentumGrid, time)

Constructs a new Distribution
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Help functions

Below are different help functions located in CODElib folder documented.

2.1 cs = CalculateMollerCS(g,g1)

cs = CalculateMollerCS(g,g1)

Calculates the Møller cross-section (cs) for large-angle electron-electron collisions between an incoming electron with
initial 𝑔𝑎𝑚𝑚𝑎 = 𝑔1 (relatistic gamma function) and an electron at rest, which acquires 𝑔𝑎𝑚𝑚𝑎 = 𝑔 in the collision.
Input g and g1 can be arrays (of the same size).

2.2 moment = CalculateRunawayMomentXiDepen-
dent(Nxi,Ny,f,xiIntMat,weightsMat)

moment = CalculateRunawayMomentXiDependent(Nxi,Ny,f,xiIntMat,weightsMat)

Calculates the 𝜉 dependent runaway moment given integration matricices.

Input:

Nxi - number of legandre modes

Ny - Number of grid points

f - distribution function

xiIntMat -

weightsMat -
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2.3 sigma = CalculateSigmaIntegral(gamma,gamma_m)

sigma = CalculateSigmaIntegral(gamma,gamma_m)

Calculates the integral ∫︁ 𝛾+1−𝛾𝑚

𝛾𝑚

Σ(𝛾, 𝛾1)𝑑𝛾1

analytically. This calculation is needed for the full, conservative close-collision operator. Gamma can be a vector or
array, 𝛾𝑚 must be a scalar. If 𝛾 + 1− 𝛾𝑚 < 𝛾𝑚, the integral is set to be zero.

2.4 [m,xiGrid] = GenerateCumIntMat(Nxi,nPoints)

[m,xiGrid] = GenerateCumIntMat(Nxi,nPoints)

Generates grids to cumulatively integrate legendre modes over a xi grid

2.5 f = interpolateDistribution(dist,MG)

f = interpolateDistribution(dist,MG)

Interpolates each legandre mode function from distribution for itself with the momentumGrid in query. The distribution
in Distribution is interpreted to be zero above its maximum momentum, and in legandre modes higher than its Nxi.
Input:

dist - Distribution object, from which the distribution should be interpolated.

MG - MomentumGrid object, to which grid the output distribution is interpolated.

2.6 outPls = LegendrePolynomials(l,x)

outPls = LegendrePolynomials(l,x)

LegendrePolynomials calculates 𝑃𝑙(𝑥).

Calculates the legendre polynomials 𝑃𝑖(𝑥) for 𝑖 = 0, 1, ..., 𝑙 using Bonnet’s recursion formula:

(𝑛 + 1) * 𝑃𝑛+1(𝑥) = (2𝑛 + 1) * 𝑥 * 𝑃𝑛(𝑥)− 𝑛 * 𝑃𝑛−1(𝑥),

where 𝑃0(𝑥) = 1 and 𝑃1(𝑥) = 𝑥.

Usage: pls = LegendrePolynomials(l,x)

l is the (highest) mode number and x is the coordinate, which must be a row vector (not a matrix).

pls has the structure

[𝑃0(𝑥)]
[𝑃1(𝑥)]

[...]
[𝑃𝑙(𝑥)]
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2.7 [x,w] = lgwt(N,a,b)

[x,w] = lgwt(N,a,b)

This script is for computing definite integrals using Legendre-Gauss Quadrature. Computes the Legendre-Gauss nodes
and weights on an interval [a,b] with truncation order N

Suppose you have a continuous function f(x) which is defined on [a,b] which you can evaluate at any x in [a,b]. Simply
evaluate it at all of the values contained in the x vector to obtain a vector f. Then compute the definite integral using
sum(f.*w).

Written by Greg von Winckel - 02/25/2004

2.8 [x, w, D, DD] = m20121125_04_DifferentiationMatricesForUniformGrid(N,
xMin, xMax, scheme)

[x, w, D, DD] = m20121125_04_DifferentiationMatricesForUniformGrid(N, xMin, xMax, scheme)

Finite difference differentiation matrices and integration weights for a uniform grid.

Created by Matt Landreman, Massachusetts Institute of Technology, Plasma Science & Fusion Center, 2012.

Inputs:

N - number of grid points.

xMin - minimum value in the domain.

xMax - maximum value in the domain.

scheme - switch for controlling order of accuracy for differentiation and handling of endpoints.

Options for scheme:

0 - The domain [xMin, xMax] is assumed to be periodic. A 3-point stencil is used everywhere. A grid
point will be placed at xMin but not xMax.

1 - Same as scheme=0, except a grid point will be placed at xMax but not xMin.

2 - The domain [xMin, xMax] is assumed to be non-periodic. A 3-point stencil is used everywhere. The
first and last row of the differentiation matrices will use one-sided differences, so they will each have a
non-tridiagonal element.

3 - The same as scheme=2, except that the first differentiation matrix will use a 2-point 1-sided stencil for
the first and last elements so the matrix is strictly tri-diagonal. The 2nd derivative matrix is the same as
for option 2, since it is not possible to compute the 2nd derivative with only a 2-point stencil.

10 - The domain [xMin, xMax] is assumed to be periodic. A 5-point stencil is used everywhere. A grid
point will be placed at xMin but not xMax. This option is like scheme=0 but more accurate.

11 - Same as scheme=10, except a grid point will be placed at xMax but not xMin. This option is like
scheme=1 but more accurate.

12 - The domain [xMin, xMax] is assumed to be non-periodic. A 5-point stencil is used everywhere. The
first two and last two rows of the differentiation matrices will then each have non-pentadiagonal elements.

13 - The same as option 12, except that 3-point stencils are used for the first and last rows of the differ-
entiation matrices, and 4-point stencils are used for the 2nd and penultimate rows of the differentiation
matrices. With this option, both differentiation matrices are strictly penta-diagonal.

2.7. [x,w] = lgwt(N,a,b) 37
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20 - The domain [xMin, xMax] is assumed to be periodic. Spectral differentiation matrices are returned.
A grid point will be placed at xMin but not xMax.

21 - Same as scheme=20, except a grid point will be placed at xMax but not xMin.

Outputs:

x - column vector with the grid points.

w - column vector with the weights for integration using the trapezoid rule.

D - matrix for differentiation.

DD - matrix for the 2nd derivative.

2.9 m = MapToXiIntMat(cumintMat,xiGrid,EOverEc,y2,deltaRef)

m = MapToXiIntMat(cumintMat,xiGrid,EOverEc,y2,deltaRef)

TODO Documenation

2.10 [posF,negF] = SumLegModesAtXi1(f,Ny,Nxi)

[posF,negF] = SumLegModesAtXi1(f,Ny,Nxi)

Calculates the total distribution at xi=1 (v_perp=0) by summing over all the Legendre modes of the distribution

Input:

f - distribution function with normalization as in CODE and Nxi legandre modes projections. first Ny
points are for first legandre mode.

Nxi - Number of Legandre Modes

Ny - Number of radial grid points

2.11 i = CalculateCurrentAlongB(f,y,yWeights, Ny, nRef ,deltaRef)

i = CalculateCurrentAlongB(f,y,yWeights, Ny, nRef ,deltaRef)

Calculates current density in SI along magnetic axis specifically calculates

𝑛

∫︁∫︁∫︁
𝑓𝑒𝑣𝑑3𝑣

which reduces to

4𝑛𝑅𝑒𝑓𝑒𝑣𝑅𝑒𝑓/(3
√︀

(𝜋)𝑚3
𝑒)

∫︁ ∞

0

𝑦3/𝛾𝑑𝑦

where 𝑒 is electron charge, and 𝑣 is the electron speed

Input:

f - distribution %function with normalization as in CODE and Nxi legandre modes projections. first Ny
points are for first legandre mode.

y - is vector of momentum points as y = gamma v / v_Ref where gamma is relativistic gamma function, v
electron speed, and v_Ref reference thermal speed of electrons used in y
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yWeights - contains dy weights for integrating over y

nRef - referece density of electrons in SI

deltaRef - vRef/c where c is speed of light

2.12 n = CalculateDensity(f,Ny,Nxi,y,yWeights,nRef)

n = CalculateDensity(f,Ny,Nxi,y,yWeights,nRef)

Calculates density n as integral over momentum space. The density is output in SI.

Input:

f - distribution %function normalized as in CODE

y - momentum grid

yWeights - weights for integrating y

nRef - reference density

Nxi - Legendre Modes

Ny - points in y;

2.13 delta = getDeltaFromT(T)

delta = getDeltaFromT(T)

Computes the delta (=v_th/c) parameter used in CODE from the electron temperature (in eV).

2.14 [delta,lnLambda,collFreq,BHat] = getDerivedParame-
ters(T,density,B)

[delta,lnLambda,collFreq,BHat] = getDerivedParameters(T,density,B)

Calculates the parameters delta, coloumb logarithm lnLambda and the collision frequency (and time) for given E (in
V/m), T (in eV) and density (in m^{-3}). Collission frequency uses Matt’s definition Collision time = 1/Collision
Frequency

2.15 [EOverEC,EOverED,EHat] = getNormalizedEFields(E,T,density)

[EOverEC,EOverED,EHat] = getNormalizedEFields(E,T,density)

Normalizes an electric field in V/m to the critical field EOverEc, and to the dreicer field EOverED E is the field in
V/m, T is the electron temperature in eV and density is the electron density in m^{-3}.

2.12. n = CalculateDensity(f,Ny,Nxi,y,yWeights,nRef) 39
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2.16 sigma = GetSpitzerConductivity(T,n,Z)

sigma = GetSpitzerConductivity(T,n,Z)

Calculates the plasma Spitzer conductivity in units of (Ohm m)^-1, from the formula on p. 72 of Helander & Sigmar.
Usage:

sigma = GetSpitzerConductivity(T,n,Z)

n must be in units of m^(-3), T in eV. There is a prefactor that depends on Z which is only known numerically (table
on p.74 in Helander & Sigmar and Table III in Spitzer & Härm). Let’s interpolate to find the value for any Z. Since
there is a data point at infinity, lets use 1/Z for the interpolation. Simplified expression in Chang (Eq. [5-76]): sigma
= 19.2307e3*T.^(1.5)./Z./lnLambda; Written by Adam Stahl
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CHAPTER 3

Code internal structure

3.1 Code description

In this chapter we describe the overall structure of how indexing is done in various variables

3.1.1 Geneneral time concept

In variables in one dimension that depends on time, the indexing start on 1 which corresponds to the values at the
initial distribution (whether the initial distribution is given or not). In variables with more than one dimension, one
must check the specific variables documentation to know in which dimension (row/col) the time is defined. Sometimes
there are also variables which have two dimensions which of none represent time advancment. Such can for example
be when plotting the distribution function i 2D momentum space.

3.1.2 Structure of Common Variables

Here the some variables structure is define.

The distribution function is a 1d array (and is for example present in SmartLUSolver as variable fatTimeIndex or
in Distribution as variable f). Each coloumn has the structure

𝑓 =

⎡⎢⎢⎢⎣
[︀
𝑓1(𝑦)

]︀[︀
𝑓2(𝑦)

]︀
...[︀

𝑓𝑁𝜉
(𝑦)

]︀
⎤⎥⎥⎥⎦

where f_i(y) is the projection on the i_th Legandre mode at momentum y. The associated momentum vector is found
in the State or MomentumGrid objects which are properties to the class.

Time dependent variables. In physical params class, E, T, n and Z can be time dependent. From the users perspective,
these are always defined at the associated TimeGrid (unless half complicated manouvers are done, see later in this
documentation). The raw input data is always saved and it is from this data the interpolation is done.
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3.1.3 Equation

The equation beeing solved is the kinetic equation, which reads

𝑑𝑓

𝑑𝑡
+ 𝐹 · 𝑑𝑓

𝑑𝑝
+ 𝑣⃗ · 𝑑𝑓

𝑑𝑥⃗
= 𝐶{𝑓}.

In this code, only momentum is considered and all spatial dependence is disregarded. The momentum is parameterized
using spherical coordinates, where the polar angle is replaced with the pitch angle. The distribution function is assumed
to be independent of the azimuthal angle due to gyro averaging. The pitch angle is described by its cosine as

𝜉 = cos(𝜃)

where theta is the pitch angle.

By only considering the average electric field along the magnetic field the equation

𝑑𝑓

𝑑𝑡
+ 𝑒𝐸(𝜉

𝑑𝑓

𝑑𝑝
+

1− 𝜉2

𝑝

𝑑𝑓

𝑑𝜉
) = 𝐶{𝑓}

is obtained; where p is the momentum, E the electric field strength and e the electron charge. This is then discritized
as

𝑓 =

⎡⎢⎢⎢⎣
[︀
𝑓1(𝑦)

]︀[︀
𝑓2(𝑦)

]︀
...[︀

𝑓𝑁𝜉
(𝑦)

]︀
⎤⎥⎥⎥⎦

where f_i(y) is the projection on the i_th Legandre mode at momentum y.

Numerically this is then rewritten as a matrix equation

←→
𝑂 Implicit𝑓

𝑖+1 +
𝑓 𝑖+1 − 𝑓 𝑖

∆𝑡
=
←→
𝑂 Explicit𝑓

𝑖 + 𝑆(𝑓).

Operators extending ImplicitOperator is written to be a part of the operator indexed ‘’Implicit” and operators
extending ExplicitOperator is written to be part of the operator indexed Explicit. The classes extending the
Source is written to be added to the S(f) function and is done so since their matrix representation is large. Therefore
it is more numerically feasible to handle them explicitly as functions of f. The difference between Source and
ExplicitOperator is that Source uses the distribution function all the time and recalculates the source whilst
the ExplicitOperator calculates a matrix representation and then uses the matrix product to calculate the term.

The equation is normalized to a reference temperature and a reference density such that the unit of time is in electron
electron collision times using the most probable thermal speed in the collision frequency. The distribution function is
normalized such that a 1D-maxwellian distribution with this normalization and density of reference density acquire a
value of 1 at velocity zero. The full derivations and equations is described in ‘’Reference To Adams Paper’‘.
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CHAPTER 4

Indices and tables

• genindex

• modindex

• search
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Index

A
absoluteSpeedThreshold, 7
addDistribution() (built-in function), 33
addSparseBlock() (built-in function), 5
addToSparse() (built-in function), 5
artificialDissipationStrength, 24
artificialDissipationWidth, 24
autoInitGrid() (built-in function), 17
averageEnergyMeV, 31
averageFastEnergyMeV, 31
averageREEnergyMeV, 31

B
B, 19, 32
BHatRef, 32
BHatUsed, 13
bremsMode, 8
bremsModeUsed, 15
BuildInterpolationMatrix() (built-in func-

tion), 14

C
calcDepParams() (built-in function), 22
CalcgBoltzmann() (built-in function), 12
CalculateEnergyDependentlnLambda()

(built-in function), 10
CalculateInelasticEnhancement() (built-in

function), 10
CalculateScreeningFactor() (built-in func-

tion), 11
CalculateSpeciesScreeningFactor() (built-

in function), 11
ChiuHarveySource (built-in class), 4
clearf() (built-in function), 30
clearSparseResidue() (built-in function), 5
collisionOperator, 6
CollisionOperator (built-in class), 10
currentDensity, 31
currentDensityRE, 31

D
d2dy2, 23
ddx, 23
ddy, 23
ddyUsed, 8
deltaBoverB, 13
deltaRef, 18, 34
deltaRefUsed, 13
deltas, 20, 32
deltaUsed, 15
DetermineFastParticleRegion() (built-in

function), 4
DiagonalPlusBoundaryCondition (built-in

class), 8
DiagonalPlusBoundaryCondition() (built-in

function), 8
Distribution() (built-in function), 34
distributions, 31
dJ_rundtSI, 32
dJdtSI, 32
dt, 25
dts, 26
dtsHasChanged, 26
dyBulkScalingFactor, 17
dyTailScalingFactor, 17

E
E, 19, 32
EfieldOperator (built-in class), 9
EHats, 32
EOverEc, 20, 32
EOverED, 20, 32
eqSettings, 3, 5, 9, 29
EquationSettings (built-in class), 6
estimated_nnz, 5
explicitOp, 28

F
f, 33
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factor_L, 29
factor_P, 29
factor_Q, 29
factor_U, 29
fastParticleDefinition, 7
fattimeIndex, 29
fracRE, 31
fracRECurrent, 31
fracREEnergy, 31

G
gamma, 23
gammaUsed, 13
GenerateKnockOnMatrix() (built-in function), 14
generateOperatorMatrix() (built-in function), 9,

10, 14
getdt() (built-in function), 27
getdts() (built-in function), 28
getdtsHasChanged() (built-in function), 28
getlogGridMaxStep() (built-in function), 28
getlogGridScaling() (built-in function), 27
getlogGridSubSteps() (built-in function), 27
getnTimeSteps() (built-in function), 28
getSourceVec() (built-in function), 3, 4
gettimeStepMode() (built-in function), 27
gettimesteps() (built-in function), 28
gettMax() (built-in function), 27
gridParameter, 23
gridStepPosition, 24
gridStepWidth, 24
growthRate, 31
growthRatePerSecond, 31

I
implicitOp, 28
ImplicitOperator (built-in class), 9
ImprovedChiuHarveySource (built-in class), 14
initializeMomentumGrid() (built-in function),

25
initializeTimeGrid() (built-in function), 27
initsaveIndices() (built-in function), 30
interpolatePhysicalParams() (built-in func-

tion), 22
interpolationMethod, 21
ionMassNumber, 14

L
lnLambdaRef, 18, 34
lnLambdaRefUsed, 15
lnLambdas, 20, 33
logGridMaxStep, 26
logGridScaling, 25
logGridSubSteps, 26

M
majorRadius, 13
minPMaxMarginFactor, 17
momentumGrid, 16, 18, 34
MomentumGrid (built-in class), 22

N
n, 19, 32
nBars, 33
nBarUsed, 15
neTotalOverneFree, 20, 32
nPointsXiInt, 8
nr, 31
nr_mask, 4
nRef, 18, 34
nSaves, 29
nTimeSteps, 26
nueeBars, 33
nueeBarUsed, 13
nueeRef, 18, 34
nuees, 20, 32
Nxi, 22
Nxi_max, 17
Nxi_min, 17
NxiScalingFactor, 17
NxiUsed, 8, 13, 15
Ny, 22
NyInterpUsed, 15

O
operatorMatrix, 5, 9
operators, 6
Output (built-in class), 31

P
percentBulk, 17
PhysicalParams, 26
physicalParams, 16, 18
PhysicalParams (built-in class), 19
pMax_ceiling, 17
pMaxIncreaseFactor, 17
predictedNNZ, 5
pSwitch, 17
pUsed, 15

R
r, 17
radialScaleLength, 13
rawspecies, 19
rawtE, 20
rawtn, 20
rawtT, 20
rawtZ, 20
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reference, 16, 21, 22, 26
Reference (built-in class), 17
Reference() (built-in function), 18
relativeSpeedThreshold, 7
RelLimitUsed, 8
resetSparseCreator() (built-in function), 5
resettimeIndex() (built-in function), 30
RosenbluthSource (built-in class), 4
runawayRegionMode, 7

S
safetyFactor, 13
save() (built-in function), 33
saveDist, 31
saveIndices, 29
setartificialDissipationStrength()

(built-in function), 25
setartificialDissipationWidth() (built-in

function), 25
setB() (built-in function), 22
setdt() (built-in function), 27
setE() (built-in function), 22
setf() (built-in function), 30
setftoMaxmellian() (built-in function), 30
setftoZero() (built-in function), 30
setgridParameter() (built-in function), 24
setgridStepPosition() (built-in function), 25
setgridStepWidth() (built-in function), 25
setInitialRunaway() (built-in function), 17
setlogGridMaxStep() (built-in function), 27
setlogGridScaling() (built-in function), 27
setlogGridSubSteps() (built-in function), 27
setMomentumGrid() (built-in function), 18
setn() (built-in function), 21
setnSaves() (built-in function), 30
setNxi() (built-in function), 24
setNy() (built-in function), 24
setParams() (built-in function), 21
setPhysicalParameters() (built-in function), 21
setPhysicalParams() (built-in function), 18, 26
setResolution() (built-in function), 24, 26
setspecies() (built-in function), 21
setT() (built-in function), 21
setTime() (built-in function), 30
setTimeGrid() (built-in function), 18
settimeStepMode() (built-in function), 27
settMax() (built-in function), 27
setyGridMode() (built-in function), 24
setyMax() (built-in function), 24
setyMaxBoundaryCondition() (built-in func-

tion), 25
setZ() (built-in function), 22
SmartLUSolver (built-in class), 29
Solver (built-in class), 28

Source (built-in class), 3
sourceMode, 7
sources, 29
sourceVector, 3
sparseCreator_i, 5
sparseCreator_j, 5
sparseCreator_s, 5
sparseCreatorIndex, 5
species, 19, 32
speciesUsed, 15
state, 3, 5, 9, 28
State (built-in class), 16
SynchrotronLoss (built-in class), 12

T
T, 19, 32
tail_mask, 4
tailThreshold, 7
takeTimeSteps() (built-in function), 29
time, 34
timeGrid, 16, 18, 21
TimeGrid (built-in class), 25
TimeGrid() (built-in function), 26
timeIndex, 29
times, 32
timeStepMode, 25
timesteps, 26
tMax, 25
totalEnergyJ, 32
totalEnergyMeV, 32
TRef, 18, 34

U
updateOperators() (built-in function), 29
updateRawTimes() (built-in function), 22
updateReferenceVals() (built-in function), 19
useEnergyDependentLnLambdaScreening, 6
useFullSynchOpUsedA, 13
useInelastictake, 6
useNonRelativisticCollOp, 7
useScreening, 6
useScreeningUsed, 15

V
veBars, 33
VERSION, 16, 21, 24

X
x, 23

Y
y, 23
y2, 23
y4, 23
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yc, 31
yCutSource, 7
yGridMode, 23
yMax, 22
yMaxBC, 8
yMaxBCUsed, 13
yMaxBoundaryCondition, 24
yUsed, 13
yWeights, 23

Z
Z, 19, 32
ZUsed, 15
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